Type: \(\displaystyle B^{1}_2\) (Dynkin type computed to be: \(\displaystyle B^{1}_2\))
Simple basis: 2 vectors: (2, 2, 2, 1), (-1, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: B^{1}_2
simple basis centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Number of k-submodules of g: 15
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{2}}+4V_{\omega_{2}}+10V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, -2, -1)(0, 0, -2, -1)g_{-10}-2\varepsilon_{3}
Module 21(0, 0, -1, -1)(0, 0, -1, -1)g_{-7}-\varepsilon_{3}-\varepsilon_{4}
Module 31(0, 0, 0, -1)(0, 0, 0, -1)g_{-4}-2\varepsilon_{4}
Module 41(0, 0, -1, 0)(0, 0, -1, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 54(0, -1, -2, -1)(0, 1, 0, 0)g_{2}
g_{5}
g_{-13}
g_{-12}
\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 61(0, 0, 1, 0)(0, 0, 1, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 71(0, 0, 0, 1)(0, 0, 0, 1)g_{4}2\varepsilon_{4}
Module 84(0, -1, -1, -1)(0, 1, 1, 0)g_{6}
g_{8}
g_{-11}
g_{-9}
\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 91(0, 0, 1, 1)(0, 0, 1, 1)g_{7}\varepsilon_{3}+\varepsilon_{4}
Module 104(0, -1, -1, 0)(0, 1, 1, 1)g_{9}
g_{11}
g_{-8}
g_{-6}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
Module 111(0, 0, 2, 1)(0, 0, 2, 1)g_{10}2\varepsilon_{3}
Module 124(0, -1, 0, 0)(0, 1, 2, 1)g_{12}
g_{13}
g_{-5}
g_{-2}
\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
Module 1310(0, -2, -2, -1)(0, 2, 2, 1)g_{14}
g_{15}
g_{-1}
g_{16}
-h_{1}
h_{4}+2h_{3}+2h_{2}+2h_{1}
g_{-16}
g_{1}
g_{-15}
g_{-14}
2\varepsilon_{2}
\varepsilon_{1}+\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
2\varepsilon_{1}
0
0
-2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
Module 141(0, 0, 0, 0)(0, 0, 0, 0)h_{3}0
Module 151(0, 0, 0, 0)(0, 0, 0, 0)h_{4}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 5
Heirs rejected due to not being maximally dominant: 6
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 6
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: B^{1}_2+A^{2}_1, B^{1}_2+A^{1}_1,